Object Detection from Large-Scale 3D Datasets Using Bottom-Up and Top-Down Descriptors
نویسندگان
چکیده
We propose an approach for detecting objects in large-scale range datasets that combines bottom-up and top-down processes. In the bottom-up stage, fast-to-compute local descriptors are used to detect potential target objects. The object hypotheses are verified after alignment in a top-down stage using global descriptors that capture larger scale structure information. We have found that the combination of spin images and Extended Gaussian Images, as local and global descriptors respectively, provides a good trade-off between efficiency and accuracy. We present results on real outdoors scenes containing millions of scanned points and hundreds of targets. Our results compare favorably to the state of the art by being applicable to much larger scenes captured under less controlled conditions, by being able to detect object classes and not specific instances, and by being able to align the query with the best matching model accurately, thus obtaining precise segmentation.
منابع مشابه
Weakly Supervised Top-down Salient Object Detection
Top-down saliency models produce a probability map that peaks at target locations specified by a task/goal such as object detection. They are usually trained in a fully supervised setting involving pixel-level annotations of objects. We propose a weakly supervised top-down saliency framework using only binary labels that indicate the presence/absence of an object in an image. First, the probabi...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملAn End-to-end 3D Convolutional Neural Network for Action Detection and Segmentation in Videos
Deep learning has been demonstrated to achieve excellent results for image classification and object detection. However, the impact of deep learning on video analysis (e.g. action detection and recognition) has not been that significant due to complexity of video data and lack of annotations. In addition, training deep neural networks on large scale video datasets is extremely computationally e...
متن کاملA Method for Detecting Windows from Mobile LiDAR Data
One Sentence: This paper presents a novel method for window detection from mobile LiDAR data. Abstract: Mobile LiDAR (Light Detection And Ranging) data collection is a rapidly emerging technology in which multiple georeferenced sensors (e.g., laser scanners, cameras) are mounted on a moving vehicle to collect real world data. The photorealistic modeling of large-scale real world scenes such as ...
متن کاملPanoContext: A Whole-Room 3D Context Model for Panoramic Scene Understanding
The field-of-view of standard cameras is very small, which is one of the main reasons that contextual information is not as useful as it should be for object detection. To overcome this limitation, we advocate the use of 360◦ full-view panoramas in scene understanding, and propose a whole-room context model in 3D. For an input panorama, our method outputs 3D bounding boxes of the room and all m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008